Random-phase reservoir and a quantum resistor: The Lloyd model
نویسندگان
چکیده
منابع مشابه
A Random Resistor Network Model of Space-Time
A new model of space-time is proposed that incorporates the properties of a random resistor network. The self-similar nature of such networks is particularly useful in extrapolating force interactions to different levels of scale. By modeling time and matter as current and resistance, respectively, a simple equation for mass, time, and motion is derived that provides a novel mechanism for the d...
متن کاملPotts-model formulation of the random resistor network.
The randomly diluted resistor network is formulated in terms of an n-replicated s-state Potts model with a spin-spin coupling constant J in the limit when first n, then s, and finally 1/J go to zero. This limit is discussed and to leading order in 1/J the generalized susceptibility is shown to reproduce the results of the accompanying paper where the resistor network is treated using the xy mod...
متن کاملRandom-resistor-random-temperature KLJN key exchange
We introduce two new Kirchhoff-law–Johnson-noise (KLJN) secure key distribution schemes, which are the generalization of the original KLJN version. The first system, the Random-Resistor (RR-) KLJN scheme is using random resistors chosen from a quasi-continuum set of resistance values. It is well known since the creation of the KLJN concept that such system could work because Alice and Bob can c...
متن کاملRandom resistor network model of minimal conductivity in graphene.
Transport in undoped graphene is related to percolating current patterns in the networks of n- and p-type regions reflecting the strong bipolar charge density fluctuations. Finite transparency of the p-n junctions is vital in establishing the macroscopic conductivity. We propose a random resistor network model to analyze scaling dependencies of the conductance on the doping and disorder, the qu...
متن کاملThe spectral function of random resistor networks
The effective complex conductivity σeff of a two-component material can be conveniently expressed as an integral transformation of a spectral function. The spectral function depends only on the geometry of the material, and can be used to calculate σeff for any particular choice of component conductivities. This is a very useful feature if the component conductivities can be varied (by changing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2007
ISSN: 1098-0121,1550-235X
DOI: 10.1103/physrevb.76.092202